

# Comlinear™ CLC1004, CLC3004

# Single and Triple, 750MHz Amplifiers with Disable

#### **FEATURES**

- 0.1dB gain flatness to 40MHz
- 0.07%/0.01° differential gain/phase
- 750MHz -3dB bandwidth at G = 2
- 350MHz large signal bandwidth
- 1,700V/µs slew rate
- 5nV/√Hz input voltage noise
- 100mA output current
- 20ns enable time
- Stable for gains of 2V/V or larger
- Fully specified at 5V and ±5V supplies
- CLC1004: Lead-free SOT23-6
- CLC3004: Lead-free TSSOP-16

#### **APPLICATIONS**

- RGB video line drivers
- High definition video driver
- Video switchers and routers
- ADC buffer
- Active filters
- Cable drivers
- Imaging applications
- Radar/communication receivers

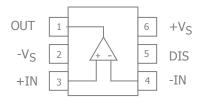
#### **General Description**

The *Comlinear* CLC1004 (single) and CLC3004 (triple) are high-performance, voltage feedback amplifiers that provide 750MHz gain of 2 bandwidth,  $\pm 0.1$ dB gain flatness to 40MHz, and 1,700V/ $\mu$ s slew rate. This high performance exceeds the requirements of high-definition television (HDTV) and other multimedia applications. These *Comlinear* high-performance amplifiers also provide ample output current to drive multiple video loads.

The *Comlinear* CLC1004 and CLC3004 are designed to operate from ±5V or +5V supplies. Both amplifiers offer a fast enable/disable feature to save power. While disabled, the outputs are in a high-impedance state to allow for multiplexing applications. The combination of high-speed, low-power, and excellent video perfomance make these amplifiers well suited for use in many general purpose, high-speed applications including video line driving and imaging applications.

#### Typical Application - TBD

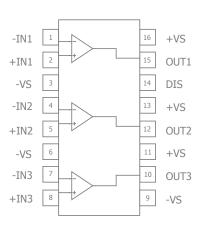
## **Ordering Information**


| Part Number    | Package  | Pb-Free | Operating Temperature Range | Packaging Method |
|----------------|----------|---------|-----------------------------|------------------|
| CLC1004IST6X*  | SOT23-6  | Yes     | -40°C to +85°C              | Reel             |
| CLC1004IST6*   | SOT23-6  | Yes     | -40°C to +85°C              | Rail             |
| CLC3004ITP16X* | TSSOP-16 | Yes     | -40°C to +85°C              | Reel             |
| CLC3004ITP16*  | TSSOP-16 | Yes     | -40°C to +85°C              | Rail             |

<sup>\*</sup>Preliminary Product Information

Moisture sensitivity level for all parts is MSL-1.

©2007 CADEKA Microcircuits LLC.


## **CLC1004 Pin Configuration**



## **CLC1004** Pin Assignments

| Pin No. | Pin Name        | Description                                                                                                                                 |
|---------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | OUT             | Output                                                                                                                                      |
| 2       | -V <sub>S</sub> | Negative supply                                                                                                                             |
| 3       | +IN             | Positive input                                                                                                                              |
| 4       | -IN             | Negative input                                                                                                                              |
| 5       | DIS             | Disable pin. Enabled if pin is grounded, left floating or pulled below $V_{\mbox{ON}}$ , disabled if pin is pulled above $V_{\mbox{OFF}}$ . |
| 6       | +V <sub>S</sub> | Positive supply                                                                                                                             |

## **CLC3004 Pin Configuration**



## **CLC3004** Pin Configuration

| Pin No. | Pin Name        | Description                                                                                                                                 |
|---------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | -IN1            | Negative input, channel 1                                                                                                                   |
| 2       | +IN1            | Positive input, channel 1                                                                                                                   |
| 3       | -Vs             | Negative supply                                                                                                                             |
| 4       | -IN2            | Negative input, channel 2                                                                                                                   |
| 5       | +IN2            | Positive input, channel 2                                                                                                                   |
| 6       | -Vs             | Negative supply                                                                                                                             |
| 7       | -IN3            | Negative input, channel 3                                                                                                                   |
| 8       | +IN3            | Positive input, channel 3                                                                                                                   |
| 9       | -Vs             | Negative supply                                                                                                                             |
| 10      | OUT3            | Output, channel 3                                                                                                                           |
| 11      | +V <sub>S</sub> | Positive supply                                                                                                                             |
| 12      | OUT2            | Output, channel 2                                                                                                                           |
| 13      | +V <sub>S</sub> | Positive supply                                                                                                                             |
| 14      | DIS             | Disable pin. Enabled if pin is grounded, left floating or pulled below $V_{\mbox{ON}}$ , disabled if pin is pulled above $V_{\mbox{OFF}}$ . |
| 15      | OUT1            | Output, channel 1                                                                                                                           |
| 16      | +V <sub>S</sub> | Positive supply                                                                                                                             |

#### Disable Pin Truth Table

| Pin | High     | Low*    |
|-----|----------|---------|
| DIS | Disabled | Enabled |

\*Default Open State

#### **Absolute Maximum Ratings**

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

| Parameter           | Min                   | Max                   | Unit |
|---------------------|-----------------------|-----------------------|------|
| Supply Voltage      | 0                     | 14                    | V    |
| Input Voltage Range | -V <sub>s</sub> -0.5V | +V <sub>S</sub> +0.5V | V    |

### **Reliability Information**

| Parameter                         | Min | Тур | Max | Unit |
|-----------------------------------|-----|-----|-----|------|
| Junction Temperature              |     |     | 150 | °C   |
| Storage Temperature Range         | -65 |     | 150 | °C   |
| Lead Temperature (Soldering, 10s) |     |     | 300 | °C   |
| Package Thermal Resistance        |     |     |     |      |
| 6-Lead SOT23                      |     | TBD |     | °C/W |
| 16-Lead TSSOP                     |     | TBD |     | °C/W |

Notes:

Package thermal resistance ( $\theta_{JA}$ ), JDEC standard, multi-layer test boards, still air.

#### **ESD Protection**

| Product                    | SOT23-6 | TSSOP-16 |
|----------------------------|---------|----------|
| Human Body Model (HBM)     | 2kV     | 2kV      |
| Charged Device Model (CDM) | 1kV     | 1kV      |

## **Recommended Operating Conditions**

| Parameter                   | Min | Тур | Max | Unit |
|-----------------------------|-----|-----|-----|------|
| Operating Temperature Range | -40 |     | +85 | °C   |
| Supply Voltage Range        | 4.5 |     | 12  | V    |

©2004-2007 CADEKA Microcircuits LLC

## Electrical Characteristics at +5V

 $T_A=25^{\circ}C,\,V_S=+5V,\,R_f=R_g=150\Omega,\,R_L=150\Omega$  to  $V_S/2,\,G=2;$  unless otherwise noted.

| Symbol                          | Parameter                    | Conditions                                                                        | Min | Тур           | Max | Units  |
|---------------------------------|------------------------------|-----------------------------------------------------------------------------------|-----|---------------|-----|--------|
| Frequency Do                    | omain Response               |                                                                                   |     |               |     |        |
| BW <sub>SS</sub>                | -3dB Bandwidth               | $G = +2$ , $V_{OUT} = 0.2V_{pp}$                                                  |     | 550           |     | MHz    |
| BW <sub>LS</sub>                | Large Signal Bandwidth       | $G = +2$ , $V_{OUT} = 2V_{pp}$                                                    |     | 200           |     | MHz    |
| BW <sub>0.1dBSS</sub>           | 0.1dB Gain Flatness          | $G = +2$ , $V_{OUT} = 0.2V_{pp}$                                                  |     | 35            |     | MHz    |
| BW <sub>0.1dBLS</sub>           | 0.1dB Gain Flatness          | $G = +2$ , $V_{OUT} = 2V_{pp}$                                                    |     | TBD           |     | MHz    |
| Time Domain                     | Response                     |                                                                                   |     |               |     |        |
| t <sub>R</sub> , t <sub>F</sub> | Rise and Fall Time           | V <sub>OUT</sub> = 1V step; (10% to 90%)                                          |     | 1.7           |     | ns     |
| t <sub>S</sub>                  | Settling Time to 0.1%        | V <sub>OUT</sub> = 1V step                                                        |     | 10            |     | ns     |
| OS                              | Overshoot                    | V <sub>OUT</sub> = 0.2V step                                                      |     | TBD           |     | %      |
| SR                              | Slew Rate                    | 2V step                                                                           |     | 900           |     | V/µs   |
| Distortion/No                   | ise Response                 |                                                                                   |     |               | ,   |        |
| HD2                             | 2nd Harmonic Distortion      | $V_{OUT} = 1V_{pp}$ , 5MHz                                                        |     | -65           |     | dBc    |
| HD3                             | 3rd Harmonic Distortion      | $V_{OUT} = 1V_{pp}$ , 5MHz                                                        |     | -63           |     | dBc    |
| THD                             | Total Harmonic Distortion    | $V_{OUT} = 1V_{pp}$ , 5MHz                                                        |     | 60            |     | dB     |
| $D_G$                           | Differential Gain            | NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$                                     |     | 0.07          |     | %      |
| D <sub>P</sub>                  | Differential Phase           | NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$                                     |     | 0.02          |     | 0      |
| IP3                             | Third Order Intercept        | $V_{OUT} = 0.5V_{pp}$ , 10MHz                                                     |     | 35            |     | dBm    |
| SFDR                            | Spurious Free Dynamic Range  | $V_{OUT} = 1V_{pp}$ , 5MHz                                                        |     | 63            |     | dBc    |
| e <sub>n</sub>                  | Input Voltage Noise          | > 1MHz                                                                            |     | 5             |     | nV/√Hz |
| i <sub>n</sub>                  | Input Current Noise          | > 1MHz                                                                            |     | 4             |     | pA/√Hz |
| X <sub>TALK</sub>               | Crosstalk                    | Channel-to-channel 5MHz                                                           |     | 85            |     | dB     |
| DC Performa                     |                              |                                                                                   |     |               | l   |        |
| V <sub>IO</sub>                 | Input Offset Voltage         |                                                                                   |     | 0             |     | mV     |
| dV <sub>IO</sub>                | Average Drift                |                                                                                   |     | 6             |     | μV/°C  |
| I <sub>b</sub>                  | Input Bias Current           |                                                                                   |     | 3.2           |     | μА     |
| dI <sub>b</sub>                 | Average Drift                |                                                                                   |     | 40            |     | nA/°C  |
| PSRR                            | Power Supply Rejection Ratio | DC                                                                                |     | 56            |     | dB     |
| A <sub>OL</sub>                 | Open-Loop Gain               | $V_{OUT} = V_S / 2$                                                               |     | TBD           |     | dB     |
| I <sub>S</sub>                  | Supply Current               | per channel                                                                       |     | 11            |     | mA     |
| Disable Chara                   | 117                          | por criamino.                                                                     |     |               |     |        |
| T <sub>ON</sub>                 | Turn On Time                 |                                                                                   |     | 20            |     | ns     |
| T <sub>OFF</sub>                | Turn Off Time                |                                                                                   |     | 40            |     | ns     |
| OFF                             | Off Isolation                | 5MHz                                                                              |     | TBD           |     | dB     |
| OFF <sub>COUT</sub>             | Off Output Capacitance       | 5                                                                                 |     | TBD           |     | pF     |
| OFF <sub>ROUT</sub>             | Off Output Resistance        |                                                                                   |     | TBD           |     | kΩ     |
| OTT ROUT                        | on output resistance         |                                                                                   |     | 100           |     | , ide  |
| V <sub>OFF</sub>                | Power Down Input Voltage     | DIS pin, disabled if pin is pulled above $V_{OFF}$                                |     |               | 0.5 | V      |
| V <sub>ON</sub>                 | Enable Input Voltage         | DIS pin, enabled if pin is grounded, left open or pulled below ${\rm V}_{\rm ON}$ | 1.5 |               |     | V      |
| I <sub>SD</sub>                 | Disable Supply Current       | DIS pin is pulled to V <sub>S</sub>                                               |     | 0.1           |     | mA     |
| Input Charac                    | teristics                    |                                                                                   |     |               |     |        |
| R <sub>IN</sub>                 | Input Resistance             | Non-inverting                                                                     |     | 4.5           |     | ΜΩ     |
| C <sub>IN</sub>                 | Input Capacitance            |                                                                                   |     | 1.0           |     | pF     |
| CMIR                            | Common Mode Input Range      |                                                                                   |     | 1.5 to<br>3.5 |     | V      |
| CMRR                            | Common Mode Rejection Ratio  | DC                                                                                |     | 50            |     | dB     |

©2004-2007 CADEKA Microcircuits LLC

## Electrical Characteristics at +5V continued

 $T_A=25^{\circ}\text{C},\,V_S=+5\text{V},\,R_f=R_g=150\Omega,\,R_L=150\Omega$  to  $V_S/2,\,G=2;$  unless otherwise noted.

| Symbol           | Parameter                    | Conditions          | Min | Тур           | Max | Units |
|------------------|------------------------------|---------------------|-----|---------------|-----|-------|
| Output Chara     | cteristics                   |                     |     |               |     |       |
| R <sub>O</sub>   | Output Resistance            | Closed Loop, DC     |     | 0.1           |     | Ω     |
|                  | Outrout Valleges Coving      | $R_L = 150\Omega$   |     | 1.5 to<br>3.5 |     | V     |
| V <sub>OUT</sub> | Output Voltage Swing         | $R_L = 1k\Omega$    |     | TBD           |     | V     |
| I <sub>OUT</sub> | Output Current               |                     |     | ±100          |     | mA    |
| $I_{SC}$         | Short-Circuit Output Current | $V_{OUT} = V_S / 2$ |     | TBD           |     | mA    |

#### Notes:

1. 100% tested at 25°C

## Electrical Characteristics at ±5V

 $T_A$  = 25°C,  $V_S$  = ±5V,  $R_f$  =  $R_g$  =150 $\Omega$ ,  $R_L$  = 150 $\Omega$  to GND, G = 2; unless otherwise noted.

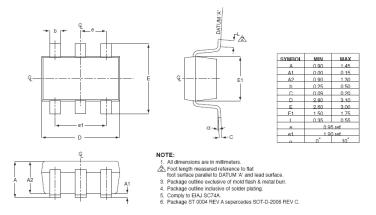
| Symbol                          | Parameter                        | Conditions                                                                     | Min | Тур  | Max      | Units  |
|---------------------------------|----------------------------------|--------------------------------------------------------------------------------|-----|------|----------|--------|
| Frequency D                     | omain Response                   |                                                                                |     |      | ,        |        |
| BW <sub>SS</sub>                | -3dB Bandwidth                   | $G = +2, V_{OUT} = 0.2V_{pp}$                                                  |     | 750  |          | MHz    |
| BW <sub>LS</sub>                | Large Signal Bandwidth           | $G = +2$ , $V_{OUT} = 2V_{pp}$                                                 |     | 350  |          | MHz    |
| BW <sub>0.1dBSS</sub>           | 0.1dB Gain Flatness              | $G = +2$ , $V_{OUT} = 0.2V_{pp}$                                               |     | 40   |          | MHz    |
| BW <sub>0.1dBLS</sub>           | 0.1dB Gain Flatness              | $G = +2$ , $V_{OUT} = 2V_{pp}$                                                 |     | TBD  |          | MHz    |
| Time Domair                     | n Response                       |                                                                                |     |      | ,        | '      |
| t <sub>R</sub> , t <sub>F</sub> | Rise and Fall Time               | V <sub>OUT</sub> = 2V step; (10% to 90%)                                       |     | 2    |          | ns     |
| t <sub>S</sub>                  | Settling Time to 0.1%            | V <sub>OUT</sub> = 2V step                                                     |     | 10   |          | ns     |
| OS                              | Overshoot                        | V <sub>OUT</sub> = 0.2V step                                                   |     | TBD  |          | %      |
| SR                              | Slew Rate                        | 2V step                                                                        |     | 1700 |          | V/µs   |
| Distortion/No                   | pise Response                    |                                                                                |     |      | ,        |        |
| HD2                             | 2nd Harmonic Distortion          | $V_{OUT} = 2V_{pp}$ , 5MHz                                                     |     | -65  |          | dBc    |
| HD3                             | 3rd Harmonic Distortion          | $V_{OUT} = 2V_{pp}$ , 5MHz                                                     |     | -75  |          | dBc    |
| THD                             | Total Harmonic Distortion        | V <sub>OUT</sub> = 2V <sub>pp</sub> , 5MHz                                     |     | 64   |          | dB     |
| $D_G$                           | Differential Gain                | NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$                                  |     | 0.07 |          | %      |
| D <sub>P</sub>                  | Differential Phase               | NTSC (3.58MHz), DC-coupled, $R_L = 150\Omega$                                  |     | 0.01 |          | 0      |
| IP3                             | Third Order Intercept            | V <sub>OUT</sub> = 0.5V <sub>pp</sub> , 10MHz                                  |     | 40   |          | dBm    |
| SFDR                            | Spurious Free Dynamic Range      | $V_{OUT} = 1V_{pp}$ , 5MHz                                                     |     | 65   |          | dBc    |
| e <sub>n</sub>                  | Input Voltage Noise              | > 1MHz                                                                         |     | 5    |          | nV/√Hz |
| i <sub>n</sub>                  | Input Current Noise              | > 1MHz                                                                         |     | 4    |          | pA/√Hz |
| X <sub>TALK</sub>               | Crosstalk                        | Channel-to-channel 5MHz                                                        |     | 85   |          | dB     |
| DC Performa                     | 1                                |                                                                                |     |      |          |        |
| V <sub>IO</sub>                 | Input Offset Voltage(1)          |                                                                                | -10 | 0    | 10       | mV     |
| dV <sub>IO</sub>                | Average Drift                    |                                                                                |     | 6    |          | μV/°C  |
| I <sub>b</sub>                  | Input Bias Current (1)           |                                                                                | -20 | 3.2  | 20       | μА     |
| dI <sub>b</sub>                 | Average Drift                    |                                                                                |     | 40   |          | nA/°C  |
| PSRR                            | Power Supply Rejection Ratio (1) | DC                                                                             | 40  | 56   |          | dB     |
| A <sub>OL</sub>                 | Open-Loop Gain                   | $V_{OUT} = V_S / 2$                                                            |     | TBD  |          | dB     |
| I <sub>S</sub>                  | Supply Current (1)               | per channel                                                                    |     | 13   | 17       | mA     |
| Disable Char                    | 1                                | P. C. C. C.                                                                    |     |      | <u> </u> |        |
| T <sub>ON</sub>                 | Turn On Time                     |                                                                                |     | 20   |          | ns     |
| T <sub>OFF</sub>                | Turn Off Time                    |                                                                                |     | 40   |          | ns     |
| OFF <sub>IOS</sub>              | Off Isolation                    | 5MHz                                                                           |     | TBD  |          | dB     |
| OFF <sub>COUT</sub>             | Off Output Capacitance           |                                                                                |     | TBD  |          | pF     |
| OFF <sub>ROUT</sub>             | Off Output Resistance            |                                                                                |     | TBD  |          | kΩ     |
| V <sub>OFF</sub>                | Power Down Input Voltage         | DIS pin, disabled if pin is pulled above V <sub>OFF</sub>                      |     |      | 1.0      | V      |
| V <sub>ON</sub>                 | Enable Input Voltage             | DIS pin, enabled if pin is grounded, left open or pulled below V <sub>ON</sub> | 3.0 |      |          | V      |
| $I_{SD}$                        | Disable Supply Current (1)       | DIS pin is pulled to V <sub>S</sub>                                            |     | 0.1  | 0.3      | mA     |
| Input Charac                    | * * * *                          | 1                                                                              |     | 7.2  | 3.5      |        |
| R <sub>IN</sub>                 | Input Resistance                 | Non-inverting                                                                  |     | 4.5  |          | ΜΩ     |
| C <sub>IN</sub>                 | Input Capacitance                |                                                                                |     | 1.0  |          | pF     |
| CMIR                            | Common Mode Input Range          |                                                                                |     | ±3.2 |          | V      |
| CMRR                            | Common Mode Rejection Ratio (1)  | DC                                                                             | 40  | 50   |          | dB     |

©2004-2007 CADEKA Microcircuits LLC www

## Electrical Characteristics at ±5V continued

 $T_A$  = 25°C,  $V_S$  = ±5V,  $R_f$  =  $R_g$  =150 $\Omega$ ,  $R_L$  = 150 $\Omega$  to GND, G = 2; unless otherwise noted.

| Symbol           | Parameter                    | Conditions                | Min  | Тур  | Max | Units |
|------------------|------------------------------|---------------------------|------|------|-----|-------|
| Output Chara     | cteristics                   |                           |      | ,    |     |       |
| R <sub>O</sub>   | Output Resistance            | Closed Loop, DC           |      | 0.1  |     | Ω     |
|                  | Out of Welliams Control      | $R_{L} = 150\Omega^{(1)}$ | ±3.0 | ±4.0 |     | V     |
| V <sub>OUT</sub> | Output Voltage Swing         | $R_L = 1k\Omega$          |      | TBD  |     | V     |
| I <sub>OUT</sub> | Output Current               |                           |      | ±100 |     | mA    |
| I <sub>SC</sub>  | Short-Circuit Output Current | $V_{OUT} = V_S / 2$       |      | TBD  |     | mA    |


#### Notes:

1. 100% tested at 25°C

#### **Mechanical Dimensions**

#### SOT23-6 Package

SOT23-6



TSSOP-16 Package

#### For additional information regarding our products, please visit CADEKA at: cadeka.com

CADEKA Headquarters Loveland, Colorado

T: 970.663.5452

T: 877.663.5415 (toll free)

CADEKA, the CADEKA logo design, and Comlinear and the Comlinear logo design, are trademarks or registered trademarks of CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.

CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.



